

NOVA University of Newcastle Research Online

nova.newcastle.edu.au

Williams, A., van Dongen, J. M. & Kamper, S. J. et al. (2019) Economic evaluation of a healthy lifestyle intervention for chronic low back pain: a randomised controlled trial. European Journal of Pain, 23(3):621-34.

Available from: http://dx.doi.org/10.1002/ejp.1334

This is the peer reviewed version of the following article: *Williams, A., van Dongen, J. M. & Kamper, S. J. et al. (2019) Economic evaluation of a healthy lifestyle intervention for chronic low back pain: a randomised controlled trial. European Journal of Pain, 23(3):621-34, which has been published in final form at:* <u>http://dx.doi.org/10.1002/ejp.1334</u>. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Accessed from: http://hdl.handle.net/1959.13/1419642

1 Economic evaluation of a healthy lifestyle intervention for chronic low

2 back pain: a randomised controlled trial

- 3
- 4 Williams A^{1,2,3}, van Dongen JM^{4,5}, Kamper SJ^{3,6}, O'Brien KM^{1,2,3}, Wolfenden L^{1,2}, Yoong SL^{1,2},
- Hodder RK^{1,2,3}, Lee H^{1,3,7,8}, Robson EK^{1,2,3}, Haskins R⁹, Rissel C¹⁰, Wiggers J^{1,2}, Williams
 CM^{1,2,3}
- 7
- 8 ¹School of Medicine and Public Health, Hunter Medical Research Institute, University of
- 9 Newcastle, Newcastle NSW, 2308, Australia
- ²Hunter New England Population Health, Locked Bag 10, Wallsend NSW, 2287, Australia.
- ¹¹ ³Centre for Pain, Health and Lifestyle, NSW, Australia
- 12 ⁴Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam,
- 13 Amsterdam Public Health research institute, the Netherlands
- 14 ⁵Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, MOVE
- 15 research institute Amsterdam, the Netherlands
- ⁶School of Public Health, University of Sydney, Lvl 10, King George V Building,
- 17 Camperdown NSW, 2050, Australia
- ¹⁸ ⁷Neuroscience Research Australia (NeuRA), PO Box 1170, Randwick NSW, 2031, Australia
- 19 ⁸Centre for Statistics in Medicine, Nuffield Department of Orthopaedics Rheumatology and
- 20 Musculoskeletal Sciences, University of Oxford, Oxford, UK
- ⁹Outpatient Services, John Hunter Hospital, Hunter New England Local Health District, Locked
- 22 Bag 1, New Lambton NSW, 2305, Australia
- 23 ¹⁰NSW Office of Preventive Health, Liverpool Hospital, South West Sydney Local Health
- 24 District, Locked Bag 7279, Liverpool BC 1871
- 25
- 26
- 27
- 28
- 29

30	Corresponding author:
31	Miss Amanda Williams
32	Locked Bag 10, Wallsend, NSW 2287
33	Ph: +61 2 4924 6152
34	Fax: +61 2 4924 6490
35	Email: <u>Amanda.j.williams@hnehealth.nsw.gov.au</u>
36	
37	Running head: Economics of a lifestyle intervention for back pain
38	
39	Article type:
40	Original article
41	
42	Funding:
43 44 45 46 47 48	This study was funded by Hunter New England Local Health District, the University of Newcastle and the Hunter Medical Research Institute. The institutions had no involvement in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
49	Conflict of interest:
50	None to declare.
51	
52 53 54 55	Significance: To our knowledge this is the first economic evaluation of a randomised controlled trial of a healthy lifestyle intervention for chronic low back pain. The findings suggest that a healthy lifestyle intervention may be cost-effective relative to usual care.
56	
57	
58	

59 Abstract

- 60 **Background:** Economic evaluations which estimate cost-effectiveness of potential
- 61 treatments can guide decisions about real world healthcare services. We performed an
- 62 economic evaluation of a healthy lifestyle intervention targeting weight loss, physical activity
- and diet for patients with chronic low back pain, who are overweight or obese.

64 **Methods:** Eligible patients with chronic low back pain (n=160) were randomised to an

- 65 intervention or usual care control group. The intervention included brief advice, a clinical
- 66 consultation and referral to a 6-month telephone-based healthy lifestyle coaching service.
- 67 The primary outcome was quality-adjusted life years (QALYs). Secondary outcomes were
- pain intensity, disability, weight, and body mass index. Costs included intervention costs,
- 69 healthcare utilisation costs and work absenteeism costs. An economic analysis was
- 70 performed from the societal perspective.

71 **Results:** Mean total costs were lower in the intervention group than the control group (-

52 \$614; 95%CI: -3133 to 255). The intervention group had significantly lower healthcare costs

73 (-\$292; 95%CI: -872 to -33), medication costs (-\$30; 95%CI: -65 to -4) and absenteeism

costs (-\$1000; 95%CI: -3573 to -210). For all outcomes, the intervention was on average

- 75 less expensive and more effective than usual care, and the probability of the intervention
- being cost-effective compared to usual care was relatively high (i.e. 0.81) at a willingness-to-
- pay of \$0/unit of effect. However, the probability of cost-effectiveness was not as favourableamong sensitivity analyses.

Conclusions: The healthy lifestyle intervention seems to be cost-effective from the societal
 perspective. However, variability in the sensitivity analyses indicates caution is needed when
 interpreting these findings.

3

- 82
- 83

94 Introduction

- 95 Low back pain places a substantial burden on society. Globally, low back pain is ranked first in
- 96 terms of disability burden, and sixth in overall disease burden.(Vos et al., 2016) Low back pain
- 97 is also very costly, total annual costs are estimated at \$9.2 billion in Australia,(Walker et al.,
- 98 2003) and £11 billion in the United Kingdom, (Maniadakis and Gray, 2000) with the largest
- 99 proportion of these costs attributed to healthcare service use and lost work
- 100 productivity.(Dagenais et al., 2008) Given the economic burden of low back pain, undertaking
- 101 economic evaluations of low back pain management approaches is important.
- 102 Systematic reviews show that the development and persistence of low back pain is linked to
- 103 'lifestyle risk factors', such as overweight and obesity.(Shiri et al., 2010) Interventions targeting
- 104 lifestyle changes including weight loss, increasing physical activity and improving diet, present a
- novel and promising strategy to improve outcomes (e.g. pain or disability) for patients with low
- back pain. In response to a lack of research in this area,(Linton and van Tulder, 2001; Wai et
- al., 2008) we conducted the first randomised controlled trial (RCT) of a healthy lifestyle
- 108 intervention for patients with chronic low back pain who are overweight or obese.(Williams et al.,
- 109 2018) The intervention involved brief telephone advice, a clinical consultation and referral to a 6-
- 110 month telephone-based healthy lifestyle coaching service. The primary goal of the intervention
- 111 was to reduce pain intensity, by reducing weight and improving physical activity and diet
- behaviours. The trial showed no between group differences in any outcome reported including
- 113 pain intensity and weight. Despite the absence of clinical benefit, conducting a cost-
- 114 effectiveness analysis is recommended because cost-effectiveness analyses estimate the
- 115 probability that an intervention is cost-effective, rather than testing a hypothesis regarding cost-
- 116 effectiveness.(Petrou and Gray, 2011) This means the analysis considers the joint distribution of
- 117 differences in cost and effect, and can show that an intervention is cost-effective when neither
- 118 cost nor effect differences are individually significant.(Petrou and Gray, 2011) Such estimates
- 119 can assist decision makers in prioritising interventions to determine how to best allocate limited
- 120 funds. The purpose of the current study is to undertake an economic evaluation of the healthy
- 121 lifestyle intervention, compared with usual care.
- Economic analyses can be performed from various perspectives including the societal, and healthcare perspectives.(Drummond et al., 2005) The societal perspective includes all costs regardless of who pays. This frequently incorporates direct costs; intervention costs, plus costs of care unrelated to the intervention (i.e. healthcare services and medication costs), and the indirect costs; absence from work and impact on productivity.(Drummond et al., 2005; Polimeni et al., 2013) In contrast, the healthcare perspective only includes direct costs i.e. intervention costs and the costs of other care.(Drummond et al., 2005) In this study the primary analysis was

129 conducted from a societal perspective and a secondary analysis was conducted from the

130 healthcare perspective.

131 Methods

132 Design

We performed an economic evaluation alongside a two-arm pragmatic parallel group RCT,
which was part of a cohort multiple RCT.(Relton et al., 2010) The study design is described in
detail elsewhere.(Williams et al., 2016, 2018) The trial was prospectively registered with the
Australian New Zealand Clinical Trials Registry (ACTRN12615000478516). Ethical approval
was obtained from the Hunter New England Human Research Ethics Committee (approval No.
13/12/11/5.18) and the University of Newcastle Human Research Ethics Committee (approval
No. H-2015-0043).

140 Participants

We invited all patients with chronic low back pain who were on a waiting list for outpatient 141 142 orthopaedic consultation at the John Hunter Hospital, New South Wales (NSW), Australia, to 143 participate in a cohort study involving telephone assessments. All patients in the cohort were 144 informed that regular surveys were being conducted as part of hospital audit processes and 145 to track patient health while waiting for consultation. During one of the telephone 146 assessments, participants of the cohort study were assessed for eligibility for the RCT. 147 Eligible consenting patients were then randomised to study conditions: i) offered the 148 intervention (intervention group), or ii) remained in the cohort follow-up (usual care control 149 group). Due to the design of the study (i.e. cohort multiple RCT)(Relton et al., 2010) 150 participants were not aware of alternate study conditions. Participants from either group 151 remained on the waiting list for orthopaedic specialist consultation and could attend a 152 consultation during the study period if scheduled. Participants were also free to access care

153 outside the study as they saw fit.

154 Participant inclusion criteria for the RCT were: primary complaint of chronic low back pain 155 defined as: pain between the 12th rib and buttock crease with or without leg pain for longer 156 than 3 months; (Airaksinen et al., 2006) average low back pain intensity \geq 3 out of 10 on a 0-157 10 numerical rating scale (NRS) over the past week, or moderate level of interference to 158 activities of daily living (adaptation of item 8 on SF-36); 18 years or older; overweight or obese (body mass index (BMI) \geq 27kg/m² and <40kg/m²) based on self-reported weight and 159 160 height; and access to a telephone. Exclusion criteria were: known or suspected serious 161 pathology as the cause of back pain, as diagnosed by their general practitioner (e.g.

162 fracture, cancer, infection, inflammatory arthritis, cauda equina syndrome); previous obesity

- surgery; currently participating in any prescribed, medically supervised or commercial weight
- loss program; back surgery in the last 6 months or booked for surgery in the next 6 months;
- unable to comply with the study protocol that required adaption of meals or exercise due to
- 166 non-independent living arrangements; any medical or physical impairment precluding safe
- 167 participation in exercise, such as uncontrolled hypertension; unable to speak and read
- 168 English sufficiently to complete the study procedures.
- 169

170 Intervention

- 171 Participants randomised to the intervention group were offered an intervention involving brief
- telephone advice, a clinical consultation with a physiotherapist, and referral to a 6-month
- telephone-based health coaching service (Supplementary Table 1).
- 174 Immediately after baseline assessment and randomisation, trained telephone interviewers
- 175 provided the brief telephone advice. This advice included information that a broad range of
- 176 factors, including lifestyle risk factors contribute to the experience of low back pain, and
- 177 description of the potential benefits of weight loss and physical activity for reducing low back
- 178 pain.
- 179 The clinical consultation was a face-to-face consultation (up to one hour) conducted in a
- 180 community health centre with the study physiotherapist, who was not involved in data
- 181 collection. As detailed in our protocol,(Williams et al., 2016) the consultation was informed
- 182 by Self Determination Theory and involved two broad approaches; (i) clinical assessment
- 183 followed by low back pain education and advice, and (ii) behaviour change
- 184 techniques.(Abraham and Michie, 2008)
- 185 The telephone-based health coaching service was the NSW Get Healthy Information and
- 186 Coaching Service (GHS).(O'Hara et al., 2012) The service involves 10 individually tailored
- 187 coaching calls, based on national Healthy Eating and Physical Activity guidelines, (Brown et al.,
- 188 2012; National Health and Medical Research Council (NHMRC), 2013) delivered over 6 months
- by qualified health professionals.(O'Hara et al., 2012) The GHS is a telephone-based service to
- 190 support individuals to modify eating behaviours, increase physical activity, achieve and maintain
- 191 a healthy weight, and where appropriate includes referral to smoking cessation services.
- 192 Control

- 193 Participants randomised to the control group remained on the waiting list for orthopaedic
- 194 consultation (usual care) and took part in data collection during the study period. No
- 195 restrictions were placed upon their use of other health services during the study period.
- 196 Control participants were not aware of the intervention group but were told they would be
- 197 scheduled a clinical appointment for their back pain in 6 months (i.e. 26 weeks post
- 198 baseline).

199 Measures

- 200 The primary outcome for this economic evaluation was quality-adjusted life years (QALYs).
- 201 Secondary outcomes included pain intensity, disability, weight and BMI. We measured costs in
- 202 terms of intervention costs, healthcare utilisation costs (healthcare service and medication use)
- and absenteeism costs due to low back pain. For the primary analysis conducted from the
- societal perspective, all of these cost categories were included. For the secondary analysis
- 205 conducted from the healthcare perspective, absenteeism costs were excluded.

206 Outcomes

- Health-related quality of life was assessed at baseline, 6 and 26 weeks using the 12-item Short
- Form Health Survey version 2 (SF-12.v2).(Ware et al., 2002) The patients' SF-6D health states
- 209 were translated into utility scores using the British tariff.(Brazier et al., 2002) QALYs were
- 210 calculated by multiplying patients' utility scores by their time spent in a health state using linear
- interpolation between measurement points. Back pain intensity was assessed at baseline, 6 and
- 212 26 weeks using a 0-10 point NRS. Participants were asked to report the "average pain intensity
- experienced in their back over the past week", where 0 was 'no pain' and 10 was the 'worst
- possible pain'.(Von Korff et al., 1992) Disability was assessed at baseline, 6 and 26 weeks
- using the Roland Morris Disability Questionnaire (RMDQ).(Roland and Morris, 1983) The
- 216 RMDQ score ranges from 0 to 24, with higher scores indicating higher disability levels. Self-
- 217 reported weight (kg) was assessed at baseline, 6 and 26 weeks. BMI was calculated as weight /
- height squared (kg/m²)(National Heart, Lung, and Blood Institute & North American Association
- for the Study of Obesity, 2000) using self-reported weight at baseline, 6 and 26 weeks and self-
- 220 reported height from baseline.

221 Cost measures

- All costs were converted to Australian dollars 2016 using consumer price indices.(Reserve Bank
- of Australia, 2015) Discounting of costs was not necessary due to the 26-week follow-
- up.(Drummond et al., 2005)
- 225 Intervention costs were micro-costed and included the cost to provide the brief advice,
- estimated from the development and operational costs of the call and the interviewer wages for

the estimated average time (5 minutes) taken to provide the brief advice. Intervention costs alsoincluded the cost of a one hour clinical physiotherapy appointment, valued using Australian

- standard costs.(Australian Medical Association, 2016) Lastly, intervention costs included the
- 230 cost to provide a health coaching call from the GHS multiplied by the number of calls each
- patient received. (Scandol et al., 2012) The number of health coaching calls received was
- reported directly by the GHS.

233 Healthcare utilisation costs included any healthcare services or medication used for low back 234 pain (other than intervention costs). Healthcare utilisation costs were calculated from a patient 235 reported healthcare utilisation inventory. Participants were asked to recall any health services 236 (the type of services and number of sessions) and medications for their low back pain during the 237 past 6 weeks, at 6 and 26 weeks follow-up. Healthcare services were valued using Australian standard costs and, if unavailable, prices according to professional organisations.(Australian 238 239 Government Department of Health, 2016a; Australian Medical Association, 2016; NSW Health, 240 2011) Medication use was valued using unit prices of the Australian Pharmaceutical Benefits 241 Scheme (PBS)(Australian Government Department of Health, 2016b) and, if unavailable, prices 242 were obtained from Australian online pharmacy websites. The average of the week 6 and week 243 26 costs per patient was extrapolated, assuming linearity, to estimate the cost over the entire 244 26-week period.

- Absenteeism was assessed by asking employed patients to report the total number of sickness
- absence days due to low back pain during the past 6 weeks, at 6 and 26-week follow up.
- Absenteeism costs were estimated using the Human Capital Approach (HCA), (Drummond et
- al., 2005) calculated per patient by multiplying their total number of days off by the national
- average hourly income for their gender and age according to the Australian Bureau of
- 250 Statistics.(Reserve Bank of Australia, 2015) Absenteeism costs were extrapolated using the
- same method as described above for healthcare utilisation.

252 Statistical analysis

- All outcomes and cost measures were analysed under the intention-to-treat principle (i.e.
- analyses were based on initial group assignment and missing data were imputed). Means and
- 255 proportions of baseline characteristics were compared between the intervention and control
- group participants to assess comparability of the groups. Missing data for all outcomes and cost
- 257 measures were imputed using multiple imputation by chained equations (MICE), stratified by
- treatment group.(White et al., 2011) Data were assumed missing at random (MAR). Ten
- 259 complete datasets needed to be created in order for the loss-of-efficiency to be below the
- recommended 5%.(White et al., 2011) We analysed each of the 10 imputed datasets separately
- as specified below. Following this, pooled estimates from all imputed datasets were calculated

using Rubin's rules, incorporating both within-imputation variability (i.e., uncertainty about the
 results from one imputed data set) and between-imputation variability (i.e. uncertainty due to
 missing information). (White et al., 2011)

265 We calculated unadjusted mean costs and cost differences between groups for total and

266 disaggregated costs (intervention costs, healthcare utilisation costs (healthcare services,

267 medications used) and absenteeism costs). Seemingly unrelated regression (SUR) analyses

- were performed to estimate total cost differences (ΔC) and effect differences for all outcomes
- (ΔE) , adjusted for the baseline value of the relevant outcome and potential prognostic factors
- 270 (baseline pain intensity, time since onset of pain, waiting time for orthopaedic consultation and
- baseline BMI). An advantage of SUR is that two regression equations (one for ΔC and one ΔE)
- are modelled simultaneously so that the possible correlation between cost and outcome
- 273 differences can be accounted for.(Willan et al., 2004)
- 274 We calculated incremental cost-effectiveness ratios (ICERs) for all outcomes by dividing the
- 275 difference in total costs by the difference in outcomes ($\Delta C/\Delta E$). Uncertainty surrounding the
- 276 ICERs and 95% confidence intervals (95%CIs) around cost differences were estimated using
- bias corrected and accelerated bootstrapping (5000 replications). Uncertainty of the ICERs were
- 278 graphically illustrated by plotting bootstrapped incremental cost-effect pairs on cost-
- 279 effectiveness planes.(Drummond et al., 2005) We produced a summary measure of the joint
- 280 uncertainty of costs and outcomes (i.e. cost-effectiveness acceptability curves [CEACs]) for all
- 281 outcomes. CEACs express the probability of the intervention being cost-effective in comparison
- with usual care at different values of willingness-to-pay (i.e. the maximum amount of money
- decision-makers are willing to pay per unit of effect).(Drummond et al., 2005) Data were
- analysed in STATA (v13, Stata Corp).
- 285 Sensitivity analyses
- 286 We tested the robustness of the primary analysis, through two sensitivity analyses. First, an
- analysis was performed excluding one patient with very high absenteeism costs (absenteeism
- costs > \$15,000) (SA1). A second sensitivity analysis involved exclusion of intervention
- 289 participants who did not have reasonable adherence, defined as not attending the clinical
- 290 consultation and receiving less than 6 GHS health coaching calls (SA2).
- 291 Secondary analysis
- 292 A secondary analysis was performed from the healthcare perspective (i.e. excluding
- absenteeism costs).
- 294 Results

295 Participants

- 296 One hundred and sixty patients were randomised into the study (Fig 1). Participant
- 297 characteristics at baseline were similar between groups (Table 1). At 26 weeks, complete
- 298 outcome data were available for between 65%-75% of participants, depending on the outcome
- measure, and 59% of participants had complete cost data at 26 weeks. Thus, 26%-35% of
- 300 effect measure data and 41% of cost data were imputed (Fig 1).
- 301 Insert Fig 1

302 Outcomes

- 303 No differences were found between the intervention and control group participants at 26 week
- 304 follow-up in QALYs (MD 0.02; 95%CI: -0.00 to 0.04), pain (MD -0.35; 95%CI: -1.33 to 0.64),
- 305 disability (MD -0.57; 95%CI: -10.41 to 9.27), weight (MD -2.04; 95%CI: -4.22 to 0.14) and BMI
- 306 (MD -0.67; 95%CI: -1.44 to 0.09) (Table 2).

307 Resource use and costs

- 308 Of the intervention group patients, 47% (n=37) attended the initial consultation provided by the
- 309 study physiotherapist and the average number of successful GHS calls was 5.1 (SD 4.5). The
- mean intervention cost was \$708 (SEM 68) per patient. Over the 26 week follow-up intervention
- group participants had significantly lower healthcare costs (-\$292; 95%CI: -872 to -33),
- 312 medication costs (-\$30; 95%CI: -65 to -4) and absenteeism costs (-\$1000; 95%CI: -3573 to -
- 210) than those of the control group (Table 3). From the societal perspective, the mean total
- 314 costs over the 26 week follow-up were lower in the intervention group than in the control group
- 315 (-\$614; 95%CI: -3133 to 255) (Table 3). From the healthcare perspective, the mean total costs
- were higher in the intervention group than in the control group (\$386; 95%CI: -188 to 688)
- 317 (Table 2).

318 Societal perspective: cost-utility

- 319 The incremental cost-effectiveness ratios (ICER) for QALYs was -31,087 indicating that one
- 320 QALY gained was associated with a societal cost saving of \$31,087 (Table 2), with 77.2% of the
- 321 cost-effect pairs located in the south-east quadrant, demonstrating that the intervention was on
- 322 average less costly and more effective than usual care. The cost-effectiveness acceptability
- 323 curve (CEAC) for QALYs in Fig 2 (2a) indicates that the probability of the intervention being
- 324 cost-effective compared with usual care was 0.81 at a willingness-to-pay of \$0/QALY,
- increasing to 0.90 at a willingness-to-pay of \$17,000, and reached a maximum of 0.96 at
- 326 \$67,000.

327 Societal perspective: cost-effectiveness

- 328 The ICER for pain intensity was 1,765, indicating that a one point decrease in pain intensity was
- associated with a societal cost saving of \$1,765. ICERs in the same direction were found for
- disability (\$1,087 per one point decrease on the Roland Morris scale), weight (\$302 per one
- kilogram weight loss) and BMI (\$915 per one BMI point decrease) (Table 2). In all cases, the
- majority of incremental cost-effect pairs were located in the southeast quadrant (Table 2, Fig 2
- [1b-1e]), indicating that the intervention was on average less expensive and more effective than
- usual care. CEACs for pain intensity, disability, weight, and BMI are presented in Fig 2 (2b-2e).

335 Insert Fig 2

- 336 For all of these outcomes, the probability of cost-effectiveness was 0.81 at a willingness-to-pay
- 337 of \$0/unit of effect. For pain intensity, the probability of cost-effectiveness reached a maximum
- of 0.88 at a willingness-to-pay of \$1000/unit of effect and after this it gradually decreased to
- 0.76. For disability, the probability of cost-effectiveness decreased with increasing values of
- 340 willingness-to-pay. For weight and BMI, the probability of cost-effectiveness reached 0.90 at a
- 341 willingness-to-pay of \$1,000/unit of effect (i.e. -1kg or -1 unit of BMI), and remained above 0.90
- 342 irrespective of increasing values of willingness-to-pay.
- 343 Societal perspective: sensitivity analyses
- 344 The total cost difference between groups was -\$8 when we removed one outlier (absenteeism
- costs > \$15,000) from the analysis (SA1), and -\$74 when we included only adherent
- 346 participants (SA2); compared to -\$614 in the primary analysis (Table 2).
- 347 For QALYs the probability of cost-effectiveness was 0.51 (SA1) and 0.54 (SA2) at a willingness-
- 348 to-pay of \$0/unit of effect. For SA1, the probability of cost-effectiveness increased to 0.90 at a
- 349 willingness-to-pay of \$47,000/QALY, and reached a maximum of 0.92 at a willingness-to-pay of
- 350 \$77,000/QALY. For SA2, the probability of cost-effectiveness increased to 0.90 at a willingness-
- to-pay of \$72,000/QALY, and reached a maximum of 0.91 at a willingness-to-pay of
- 352 \$86,000/QALY. These values are higher than that of the primary analysis (i.e. a probability of
- 353 0.90 at a willingness-to-pay of \$17,000/QALY).
- 354 For pain intensity, the probability of cost-effectiveness was relatively low (i.e. <0.55) at a
- 355 willingness-to-pay of \$0/unit of effect, however, it did reach 0.90 at a willingness-to-pay of
- 356 \$3000/unit of effect in SA2. For disability, in contrast to the primary analysis, the probability of
- 357 cost-effectiveness remained relatively low (i.e. 0.50 to 0.70) in both sensitivity analyses,
- regardless of willingness-to-pay. Conversely, for weight and BMI, similar to the primary analysis,
- 359 the probability of cost-effectiveness reached 0.80-0.90 in both sensitivity analyses.

360 Healthcare perspective: cost-utility

- 361 For QALYs the ICER was 19,036 indicating that one QALY gained was associated with a cost to
- the healthcare system of \$19,036 (Table 2) and the probability of cost-effectiveness reached a maximum of 0.90 at a willingness-to-pay of \$98,000/QALY.

364 Healthcare perspective: cost-effectiveness

365 For pain intensity, the ICER was -1,031, indicating that a one point decrease in pain was 366 associated with a cost of \$1,031. ICERs in the same direction were found for disability (\$440 per 367 one point decrease on the Roland Morris scale), weight (\$187 per one kilogram weight loss) and 368 BMI (\$566 per one BMI point decrease) (Table 2). The probability of cost-effectiveness for pain 369 intensity and disability did not reach 0.90 at any value of willingness-to-pay. For pain intensity 370 and disability, the probability of cost effectiveness reached a maximum of 0.77 at \$27,000/unit 371 of effect and 0.57 at \$8000/unit of effect, respectively. For weight and BMI, the probability of 372 cost-effectiveness was similar to the primary analysis reaching 0.90 at \$1000/unit of effect and 373 \$3000/unit of effect, respectively.

374 Discussion

375 Key findings

We conducted an economic analysis of a healthy lifestyle intervention involving brief telephone 376 advice, offer of a clinical consultation involving detailed education, and referral to a 6-month 377 378 telephone-based healthy lifestyle coaching service. Despite the absence of significant clinical 379 effects, the intervention was on average less expensive and more effective than usual care from 380 the societal perspective and was associated with relatively high probabilities of being cost-381 effective compared with usual care. To illustrate, for QALYs, the intervention had a high 382 probability (0.81) of cost-effectiveness from the societal perspective at a willingness-to-pay of 383 \$0/unit of effect, and increased at higher willingness-to-pay thresholds. However, the probability 384 of cost-effectiveness was not as favourable among sensitivity analyses nor from the healthcare 385 perspective.

386 Interpretation of findings

387 Results of the cost-utility analysis from the societal perspective suggest that the intervention can

- 388 be considered cost-effective compared with usual care for QALYs. From a probability of cost-
- 389 effectiveness of 0.81 at a willingness-to-pay of \$0/QALY, the probability increased to 0.90 at a
- 390 willingness-to-pay of \$17,000/QALY and reached a maximum of 0.96 at \$67,000. The
- intervention had a high probability (>0.93) of cost-effectiveness at the published Australian

- 392 (\$64,000/QALY) and UK willingness-to-pay thresholds (\$34,000-51,000/QALY).(Shiroiwa et al.,
 393 2010)
- 394 Results of the cost-effectiveness analysis from the societal perspective for pain intensity,
- disability, weight, and BMI appear favourable. However, because society's willingness-to-pay
- 396 per unit of effect gained has not been reported/determined for these outcomes, decisions
- 397 regarding cost-effectiveness would depend on the willingness-to-pay of decision-makers and
- 398 the probability of cost-effectiveness that they perceive acceptable. Nonetheless, for all of these
- 399 outcomes there were relatively high probabilities of cost-effectiveness (i.e. 0.81) at a
- 400 willingness-to-pay of \$0/unit of effect and for all outcomes excluding disability, the probability of
- 401 cost-effectiveness increased to 0.88 or 0.90 at a willingness-to-pay of \$1000/unit of effect.
- 402 The two sensitivity analyses indicate that the findings from the societal perspective should be
- 403 interpreted with caution for QALYs, pain intensity and disability. For QALYs, in contrast to the
- 404 primary analysis the results of SA2 (i.e. excluding patients without reasonable adherence), the
- 405 intervention may not be considered cost-effective. The probability of cost-effectiveness was
- relatively low (<0.55) at a willingness-to-pay of \$0/QALY and only reached 0.90 at
- 407 \$72,000/QALY, which is above both the Australian and UK willingness-to-pay
- 408 thresholds.(Shiroiwa et al., 2010) For pain intensity in SA1 and for disability in both sensitivity
- analyses, in contrast to the primary analysis the probability of cost-effectiveness was relatively
- 410 low (i.e. 0.50 to 0.70), regardless of willingness-to-pay.
- 411 We also undertook a secondary analysis from the healthcare perspective, this involved
- 412 considering intervention, healthcare utilisation and medication costs, but not absenteeism costs.
- 413 From the healthcare perspective, the intervention may be considered cost-effective for QALYs,
- 414 weight, and BMI depending on the probability of cost-effectiveness that decision-makers
- 415 perceive as acceptable. However, the intervention seems not to be cost-effective for pain
- 416 intensity or disability due to relatively low maximum probabilities of cost-effectiveness (i.e.
- 417 <0.77).

418 Comparison with the literature

- 419 This study is the first economic evaluation of a healthy lifestyle intervention for patients with
- 420 chronic low back pain. As such, direct comparisons to similar interventions are limited.
- 421 Nonetheless, similar to our findings, systematic reviews concluded that conservative
- 422 approaches appear to be cost-effective.(Andronis et al., 2017; Lin et al., 2011a, 2011b)
- 423 Specifically, one review found that GPs can increase the cost-effectiveness of their treatments
- 424 by offering additional services such as advice, education and exercise, or exercise and
- 425 behavioural counselling.(Lin et al., 2011a) Another review concluded that treatments such as

- 426 interdisciplinary rehabilitation, exercises, acupuncture, spinal manipulation or cognitive
- 427 behavioural therapy (CBT) appear to be cost-effective options for chronic low back pain.(Lin et
- 428 al., 2011b) A 2017 review agreed, reporting that combined exercise and psychological
- 429 treatments, provision of information and spinal manipulation/acupuncture are cost-
- 430 effective.(Andronis et al., 2017) New evidence for conservative interventions including CBT,
- 431 mindfulness-based stress reduction and motion-sensor biofeedback treatment also show a high
- 432 probability of being cost-effective.(Haines and Bowles, 2017; Herman et al., 2017; Taylor et al.,
- 433 2016) For decision makers, the challenge lies in deciding between the cost-effective
- 434 interventions on offer. This challenge is heightened since many studies show substantial
- 435 heterogeneity in the cost components captured and use various analytical
- 436 perspectives.(Andronis et al., 2017; van Dongen et al., 2016; Hernon et al., 2017; Lin et al.,
- 437 2011a, 2011b) There are calls for increased effort to standardise methods to facilitate the
- 438 decision making process.(van Dongen et al., 2016; Hernon et al., 2017) In this light, our study
- 439 utilises recommended contemporary methods of economic evaluation and provides
- 440 comprehensive data to guide decisions about healthcare for this patient group.

441 Strengths

- 442 A strength of this study is the pragmatic RCT design, meaning the study was completed under
- 443 'real world' conditions. The design is advantageous for decision-makers to use the study's
- findings to guide decisions about real world healthcare services. Another strength of this study
- is the use of contemporary methods for cost-effectiveness analyses including SUR and
- bootstrapping. SUR was used to account for potential correlation between cost and effect data
- and bootstrapping allowed for estimation of uncertainty around the right skewed cost-
- 448 effectiveness estimates.

449 Limitations

A limitation of this study is the amount of incomplete data. The amount of missing outcome 450 451 data varied between the effect measures however, was at least 25% in all cases. Cost data 452 was missing for 41% of participants after 26-weeks. These levels of missing data are 453 common in economic evaluations of interventions delivered in real-world settings.(Noble et 454 al., 2012) We used multiple imputation to account for the missing data, which is 455 recommended over complete case analyses, despite this, results from this study should be 456 treated with caution. A further limitation is that costs were based on participant recall. This 457 may have introduced recall bias, although the period over which participants were required to report their resource use was reasonably short (6 weeks). This study was completed over 458 459 a relatively short follow-up period of 6 months. It is unknown whether the cost-effectiveness 460 estimates from this study would be similar over a longer follow-up period. Assessing the

461 cost-effectiveness of lifestyle interventions for chronic low back patients over the longer term 462 could possibly produce more meaningful insight. Alongside the planned specific intervention components, there are many non-specific intervention factors (i.e. attention, provider 463 464 gualities) for which we do not know their impact on cost or effect outcomes. Although non-465 specific effects are common to most pragmatically delivered interventions, caution should be 466 given to interpreting the results of this study solely as a result of the specific intervention 467 components. Lastly, the study did not include measures of presenteeism, i.e. reduced 468 productivity while at work. As presenteeism is a potentially significant cost of chronic low 469 back pain, (Dagenais et al., 2008) further research in this area should include such a 470 measure.(Prasad et al., 2004)

471

472 Directions for future research

We found that the intervention group had significantly lower absenteeism and healthcare 473 474 utilisation costs. Assessing the mechanisms driving these lower costs via mediation 475 analyses would provide valuable information to guide intervention improvement. As we have 476 discussed previously, our intervention included several pragmatically delivered components 477 and overall adherence to these components was low.(Williams et al., 2018) In SA2 where 478 only those with reasonable adherence were included in the analysis, in contrast to the 479 primary analysis, the intervention did not appear to be cost-effective for QALYs. Improved 480 intervention adherence (higher intervention costs) did not translate into improved cost (i.e. 481 less healthcare use) and effect outcomes (i.e. increased QALYs). From an economic 482 perspective, in future iterations of the lifestyle intervention efforts would be better directed at 483 improving patient benefit from what is adhered to rather than focusing solely on increasing 484 patient adherence.

485

486 Implications for policy

487 Our findings suggest that targeting lifestyle risk factors, as part of chronic low back pain

488 management, could result in cost savings from less time off work and reduced healthcare use.

489 Currently, clinical practice guidelines focus on reducing pain and disability, and lifestyle is

490 largely overlooked. Given the global economic burden of chronic low back pain, further

491 recognition of lifestyle as a priority in the treatment of chronic low back pain is warranted.

492 Despite this, inconsistencies among the sensitivity analyses results mean that this interpretation493 should be treated with caution.

The decision to utilise this healthy lifestyle intervention on the basis of cost-effectiveness, would depend on the priorities of the decision-maker. Such priorities may include the perspective they

are interested in (i.e. societal vs. healthcare). To illustrate, for this economic evaluation, analysis 496 497 from the societal perspective appeared more promising than from the healthcare perspective. 498 Additionally, decision makers would need to determine what they value as an outcome and what 499 they are willing to pay per unit of improvement. Currently, we only know how much society is 500 willing to pay per QALY gained, but this remains unclear for pain intensity, disability, weight, or 501 BMI. Moreover, decision makers would need to consider if they were interested in cost-502 effectiveness alone or if clinical effectiveness should be considered concurrently and what value 503 is given to each analysis. Once a decision-maker determines what their priorities are, the 504 methodological limitations and variability found in the sensitivity analyses should be considered 505 in the decision to utilise this intervention. Nonetheless, considering the high prevalence of 506 chronic low back pain globally, and limited resources available to support such patients, this 507 study provides decision-makers with valuable information to guide decisions about the utility of

508 available interventions.

509 Conclusions

- 510 We conducted an economic evaluation of a healthy lifestyle intervention involving brief
- 511 telephone advice, offer of a clinical consultation involving detailed education, and referral to a 6-
- 512 month telephone-based healthy lifestyle coaching service for patients with chronic low back
- 513 pain, who are overweight or obese. The intervention seems to be cost-effective for QALYs from
- the societal perspective but not from the healthcare perspective. Variability found in the
- sensitivity analyses findings should be considered in the decision to utilise this intervention.

516 Acknowledgements:

- 517 We thank all participants involved in setting the research question, all participants that were
- 518 involved in the trial and the interviewers for conducting all of the follow-up interviews.

519 Author contributions:

- 520 AW, SJK, KMO, LW, SLY, RKH, HL, RH, CR, JW and CMW were responsible for the
- 521 concept and design of the trial. CW and JW procured funding. AW, KMO, and CMW were
- responsible for project management of the trial and AW, KMO and EKR were responsible for
- 523 data collection. For this report, AW, JMvD, SJK, KMO, and CMW designed and critically
- reviewed the analysis plan and AW completed the data analysis. AW drafted the initial
- 525 manuscript, and all authors have contributed to the interpretation of the data for the work
- and revision of the manuscript. All authors have read and approved the final manuscript.

References

Abraham, C., Michie, S. (2008). A taxonomy of behavior change techniques used in interventions. *Health Psychol* 27, 379–387.

Airaksinen, O., Brox, J.I., Cedraschi, C., Hildebrandt, J., Klaber-Moffett, J., Kovacs, F., Mannion, A.F., Reis, S., Staal, J.B., Ursin, H., Zanoli, G. (2006). Chapter 4: European guidelines for the management of chronic nonspecific low back pain. *Eur Spine J* 15, S192-300.

Andronis, L., Kinghorn, P., Qiao, S., Whitehurst, D.G.T., Durrell, S., McLeod, H. (2017). Cost-Effectiveness of Non-Invasive and Non-Pharmacological Interventions for Low Back Pain: a Systematic Literature Review. *Appl Health Econ Health Policy* 15, 173–201.

Australian Government Department of Health (2016a). *The July 2016 Medicare Benefits Schedule*.

Australian Government Department of Health (2016b). Pharmaceutical Benefits Scheme (PBS).

Australian Medical Association (2016). List of Medical Services and Fees: 1 November 2016.

Brazier, J., Roberts, J., Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. *J Health Econ* 21, 271–292.

Brown, W., Bauman, A., Bull, F., Burton, N. (2012). *Development of Evidence-Based Physical Activity Recommendations for Adults (18 - 64 years)* (Report prepared for the Australian Government Department of Health).

Dagenais, S., Caro, J., Haldeman, S. (2008). A systematic review of low back pain cost of illness studies in the United States and internationally. *Spine J Off J North Am Spine Soc* 8, 8–20.

van Dongen, J.M., Ketheswaran, J., Tordrup, D., Ostelo, R.W.J.G., Bertollini, R., van Tulder, M.W. (2016). Health economic evidence gaps and methodological constraints in low back pain and neck pain: Results of the Research Agenda for Health Economic Evaluation (RAHEE) project. *Best Pract Res Clin Rheumatol* 30, 981–993.

Drummond, M., Sculpher, M., Torrance, G., O'Brien, B., Stoddart, G. (2005). *Methods for the economic evaluation of health care programmes* (New York: Oxford University Press).

Haines, T., Bowles, K.-A. (2017). Cost-effectiveness of using a motion-sensor biofeedback treatment approach for the management of sub-acute or chronic low back pain: economic evaluation alongside a randomised trial. *BMC Musculoskelet Disord* 18, 18.

Herman, P.M., Anderson, M.L., Sherman, K.J., Balderson, B.H., Turner, J.A., Cherkin, D.C. (2017). Cost-effectiveness of Mindfulness-based Stress Reduction Versus Cognitive Behavioral Therapy or Usual Care Among Adults With Chronic Low Back Pain. *Spine* 42, 1511–1520.

Hernon, M.J., Hall, A.M., O'Mahony, J.F., Normand, C., Hurley, D.A. (2017). Systematic Review of Costs and Effects of Self-Management Interventions for Chronic Musculoskeletal Pain: Spotlight on Analytic Perspective and Outcomes Assessment. *Phys Ther* 97, 998–1019.

Lin, C.-W.C., Haas, M., Maher, C.G., Machado, L.A.C., Tulder, M.W. van (2011a). Cost-effectiveness of general practice care for low back pain: a systematic review. *Eur Spine J* 20, 1012–1023.

Lin, C.-W.C., Haas, M., Maher, C.G., Machado, L.A.C., van Tulder, M.W. (2011b). Cost-effectiveness of guideline-endorsed treatments for low back pain: a systematic review. *Eur Spine J* 20, 1024–1038.

Linton, S.J., van Tulder, M.W. (2001). Preventive interventions for back and neck pain problems: what is the evidence? *Spine* 26, 778–787.

Maniadakis, N., Gray, A. (2000). The economic burden of back pain in the UK. Pain 84, 95–103.

National Health and Medical Research Council (NHMRC) (2013). *Australian Dietary Guidelines* (Canberra: NHMRC).

National Heart, Lung, and Blood Institute & North American Association for the Study of Obesity (2000). *The practical guide: identification, evaluation, and treatment for overweight and obesity in adults.* (Bethesda, MD: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Heart, Lung, and Blood Institute).

Noble, S.M., Hollingworth, W., Tilling, K. (2012). Missing data in trial-based cost-effectiveness analysis: the current state of play. *Health Econ* 21, 187–200.

NSW Health (2011). Guideline: Costs of Care Standards 2009/10 (NSW Health).

O'Hara, B.J., Phongsavan, P., Venugopal, K., Eakin, E.G., Eggins, D., Caterson, H., King, L., Allman-Farinelli, M., Haas, M., Bauman, A.E. (2012). Effectiveness of Australia's Get Healthy Information and Coaching Service®: translational research with population wide impact. *Prev Med* 55, 292–298.

Petrou, S., Gray, A. (2011). Economic evaluation alongside randomised controlled trials: design, conduct, analysis, and reporting. *BMJ* 342, d1548–d1548.

Polimeni, J.M., Vichansavakul, K., Iorgulescu, R.I., Chandrasekara, R. (2013). Why perspective matters in health outcomes research analyses. *Int Bus Econ Res J Online* 12, 1503.

Prasad, M., Wahlqvist, P., Shikiar, R., Shih, Y.-C.T. (2004). A Review of Self-Report Instruments Measuring Health-Related Work Productivity. *PharmacoEconomics* 22, 225–244.

Relton, C., Torgerson, D., O'Cathain, A., Nicholl, J. (2010). Rethinking pragmatic randomised controlled trials: introducing the "cohort multiple randomised controlled trial" design. *BMJ* 340, 963–967.

Reserve Bank of Australia (2015). Inflation Calculator.

Roland, M., Morris, R. (1983). A study of the natural history of back pain: part I: development of a reliable and sensitive measure of disability in low-back pain. *Spine* 8, 141–144.

Scandol, J., Phongsavan, P., Haas, M. (2012). *An economic appraisal of the NSW Get Healthy Information and Coaching Service* (Sydney: Prevention Research Collaboration, Sydney School of Public Health).

Shiri, R., Karppinen, J., Leino-Arjas, P., Solovieva, S., Viikari-Juntura, E. (2010). The association between obesity and low back pain: a meta-analysis. *Am J Epidemiol* 171, 135–154.

Shiroiwa, T., Sung, Y., Fukuda, T., Lang, H., Bae, S., Tsutani, K. (2010). International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? *Health Econ* 19, 422–437.

Taylor, S.J.C., Carnes, D., Homer, K., Kahan, B.C., Hounsome, N., Eldridge, S., Spencer, A., Pincus, T., Rahman, A., Underwood, M. (2016). Novel Three-Day, Community-Based, Nonpharmacological Group Intervention for Chronic Musculoskeletal Pain (COPERS): A Randomised Clinical Trial. *PLOS Med* 13, e1002040.

Von Korff, M., Ormel, J., Keefe, F.J., Dworkin, S.F. (1992). Grading the severity of chronic pain. *Pain* 50, 133–149.

Vos, T., Allen, C., Arora, M., Barber, R.M., Bhutta, Z.A., Brown, A., Carter, A., Casey, D.C., Charlson, F.J., Chen, A.Z., others (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. *The Lancet* 388, 1545–1602.

Wai, E.K., Rodriguez, S., Dagenais, S., Hall, H. (2008). Evidence-informed management of chronic low back pain with physical activity, smoking cessation, and weight loss. *Spine J Off J North Am Spine Soc* 8, 195–202.

Walker, B.F., Muller, R., Grant, W.D. (2003). Low Back Pain in Australian Adults: The Economic Burden. *Asia Pac J Public Health* 15, 79–87.

Ware, J., Kosinski, M., Bjorner, J., Turner-Bowker, D., Gandek, B., Maruish, M. (2002). *User's Manual for the SF-12v2 Health Survey (with a Supplement Documenting SF-12 Health Survey).* (Boston, MA: Lincoln, RI: QualityMetric Incorporated).

White, I.R., Royston, P., Wood, A.M. (2011). Multiple imputation using chained equations: issues and guidance for practice. *Stat Med* 30, 377–399.

Willan, A.R., Briggs, A.H., Hoch, J.S. (2004). Regression methods for covariate adjustment and subgroup analysis for non-censored cost-effectiveness data. *Health Econ* 13, 461–475.

Williams, A., Wiggers, J., O'Brien, K.M., Wolfenden, L., Yoong, S., Campbell, E., Robson, E., McAuley, J., Haskins, R., Kamper, S.J. (2016). A randomised controlled trial of a lifestyle behavioural intervention for patients with low back pain, who are overweight or obese: study protocol. *BMC Musculoskelet Disord* 17, 1.

Williams, A., Wiggers, J., O'Brien, K.M., Wolfenden, L., Yoong, S.L., Hodder, R.K., Lee, H., Robson, E.K., McAuley, J.H., Haskins, R., Kamper, S.J., Rissel, C., Williams, C.M. (2018). Effectiveness of a healthy lifestyle intervention for chronic low back pain: a randomised controlled trial. *PAIN* 159, 1137–1146.

Figure legends

Fig 1. Progress of participants through the study

Fig 2. Cost-effectiveness planes indicating the uncertainty around the incremental costeffectiveness ratios (1) and cost-effectiveness acceptability curves indicating the probability of the intervention being cost-effective at different values (\$AUD) of willingness-to-pay per unit of effect gained (2) for QALYs (a), pain (b), disability (c), weight (d) and BMI (e) (based on the imputed dataset).